Mathematics  >  SOLUTIONS MANUAL  >  SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full (All)

SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full Complete

Document Content and Description Below

SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full Complete 1. Sets and Relations √ √ 1. { 3, − 3} 2. The set is empty. 3. {1, −1, 2,−2, 3, ... −3,4,−4, 5, −5, 6, −6,10, −10,12, −12,15, −15,20, −20,30, −30, 60, −60} 4. {−10,−9,−8,−7,−6,−5, −4,−3, −2,−1,0, 1, 2,3, 4,5, 6,7, 8, 9,10,11} 5. It is not a well-defined set. (Some may argue that no element of Z + is large, because every element exceeds only a finite number of other elements but is exceeded by an infinite number of other elements. Such people might claim the answer should be ∅.) 6. ∅ 7. The set is ∅ because 3 3 = 27 and 4 3 = 64. 8. It is not a well-defined set. 9. Q 10. The set containing all numbers that are (positive, negative, or zero) integer multiples of 1, 1/2, or 1/3. 11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)} 12. a. It is a function. It is not one-to-one since there are two pairs with second member 4. It is not onto B because there is no pair with second member 2. b. (Same answer as Part(a).) c. It is not a function because there are two pairs with first member 1. d. It is a function. It is one-to-one. It is onto B because every element of B appears as second member ofsome pair. e. It is a function. It is not one-to-one because there are two pairs with second member 6. It is not onto B because there is no pair with second member 2. f. It is not a function because there are two pairs with first member 2. 13. Draw the line through P and x, and let y be its point of intersection with the line segment CD. 14. a. φ : [0, 1] → [0, 2] where φ(x) = 2x b. φ : [1, 3] → [5, 25] where φ(x) = 5 + 10(x − 1) c. φ : [a, b] → [c, d] where φ(x) = c + d− c (x − a) b a 15. Let φ : S → R be defined by φ(x) = tan(π(x − ) 2 ). 16. a. ∅; cardinality 1 b. ∅, {a}; cardinality 2 c. ∅,{a},{b},{a, b}; cardinality 4 d. ∅,{a},{b},{c},{a, b},{a, c},{b, c},{a, b, c}; cardinality 8 17. Conjecture: |P(A)| = 2 s = 2| A| . Proof The number of subsets of a set A depends only on the cardinality of A, not on what the elements of A actually are. Suppose B = {1, 2, 3, · · · ,s − 1} and A = {1, 2, 3, ,s}. Then A has all the elements of B plus the one additional element s. All subsets of B are also subsets of A; these are precisely the subsets of A that do not contain s, so the number of subsets of A not containing s is |P(B)|. Any other subset of A must contain s, and removal of the s would produce a subset of B. Thus the number of subsets of A containing s is also |P(B)|. Because every subset of A either contains s or does not contain s (but not both), we see that the number of subsets of A is 2|P(B)|. 1 2 0. Sets and Relations We Qrhave Qrshown Qrthat Qrif QrA Qrhas Qrone Qrmore Qrelement Qrthat QrB, Qrthen Qr|P(A)| Qr= Qr2|P(B)|. QrNowQr|P(∅)| Qr= Qr1, Qrso Q r if Qr|A| Qr= Qrs, Qrthen Qr|P(A)| Qr= Qr2 Q r . s 18. We Qrdefine Q ra Q rone-to-one Q rmap Q rφ Q rof Q rB A Q ronto Q rP(A). Q rLet Q r f Q r∈ Q rB A , Q r and Q r let Q rφ(f Q r) Q r= Q r {x Q r∈ Q rA Q r| Q r f Q r(x) Q r= Q r 1}. Q r Suppose Qrφ(f Qr) Qr= Q rφ(g). Qr QrThen Q r f Qr(x) Q r= Q r1 Q r if Q rand Q ronly Q r if Q rg(x) Q r= Q r1. Qr QrBecause Q r the Q ronly Q rpossible Q rvalues Q r for Q r f Qr(x) Qrand Qrg(x) Qrare Qr0 Qrand Qr1, Qrwe Qrsee Qrthat Qrf Qr(x) Qr= Qr0 Qrif Qrand Qronly Qrif Qrg(x) Qr= Qr0. Q r Consequently Qrf Qr(x) Qr= Qrg(x) Qrfor Q r all Qrx Qr∈ QrA Qrso Qrf Q r= Qrg Qrand Qrφ Qris Qrone Qrto Qrone. Q r To Qrshow Qrthat Qrφ Qris Qronto QrP(A), Qrlet QrS Qr⊆ QrA, Qrand Qrlet Qrh Qr: QrA Qr→ Qr{0, Qr1} Q r be Qrdefined Qrby Qrh(x) Qr= Qr1 Qrif Qrx Qr∈ QrS Qrand Qrh(x) Qr= Qr0 Qrotherwise. Q r Clearly Qrφ(h) Qr= QrS, Qrshowing Qrthat Qrφ Qris Qrindeed Q r onto Qr Q rP(A). 19. Picking Qrup Qrfrom Qrthe Q rhint, Q rlet Q rZ Q r= Qr{x Qr∈ QrA Qr| Qrx Qr∈/ Q rφ(x)}. Q r We Q rclaim Q rthat Q rfor Q rany Q ra Qr∈ QrA, Qrφ(a) Qr/= Q rZ. Q r Either Qra Q r∈ Q rφ(a), Q rin Qrwhich Q r case Q ra Q r∈/ QrZ, Q ror Q ra Q r∈/ Qrφ(a), Q r in Q rwhich Q r case Q ra Q r∈ Q rZ. Q rThus Q rZ Q r and Q rφ(a) Q rare Q r certainly QrdifferentQrsubsetsQrofQrA;QroneQrof QrthemQrcontainsQraQrandQrtheQrotherQroneQrdoesQrnot. Based Qron Qrwhat Qrwe Qrjust Qrshowed, Qrwe Qrfeel Qrthat Qrthe Qrpower Qrset Qrof QrA Qrhas Qrcardinality Qrgreater Qrthan Qr|A|. Q r Proceeding Qrnaively, Q rwe Qrcan Qrstart Qrwith Qrthe Qrinfinite Qrset Q rZ, Q r form Qrits Qrpower Qrset, Q r then Qrform Qrthe Qrpower Qrset Q r of Qrthat, Qrand Qrcontinue Q rthis Q rprocess Q r indefinitely. Q r If Qrthere Qrwere Q ronly Qra Q rfinite Q rnumber Qrof Qrinfinite Q rcardinal Q r numbers, Qrthis Qrprocess Qrwould Qrhave Qrto Qrterminate Qrafter Qra Qrfixed Qrfinite Q rnumber Qrof Qrsteps. Q r Since Qrit Qrdoesn’t, Q r it Qrappears Qrthat Qrthere Qrmust Qrbe Qran Qrinfinite Qrnumber Qrof QrdifferentQrinfinite Qrcardinal Qrnumbers. The Q rset Q r of Q r everything Q r is Q r not Q r logically Q r acceptable, Q r because Q r the Q rset Q r of Q r all Q rsubsets Q r of Q r the Q rset Q r of Q r everything Qrwould Qrbe Qrlarger Qrthan Qrthe Qrset Qrof Qreverything, Qrwhich Qris Qra Qrfallacy. 20. a. Q r The Qrset Qrcontaining Qrprecisely Qrthe Qrtwo Qrelements Qrof QrA Qrand Qrthe Qrthree Qr(different) Qrelements Qrof QrB Qris C Qr= Qr{1,Qr2,Qr3,Qr4,Qr5} Qrwhich Qrhas Qr5 Qrelements. i) Q r Let Q rA Q r = Q r {−2,Qr−1,Qr0} Q r and Q r B Q r = Q r {1,Qr2,Qr3,Qr·Qr·Qr·} Q r = Q r Z + . Qr Qr QrThen Q r |A| Q r = Q r 3 Q r and Q r |B| Q r = Q r ℵ0, Q r and Q r A and QrB Q rhave Qrno Qrelements Qrin Qrcommon. Q r The Qrset QrC Q rcontaining Qrall Qrelements Qrin Qreither QrA Qror QrB Qris QrC Q r= {−2, Qr−1, Qr0, Qr1, Qr2, Qr3, Qr· Qr· Qr·}. Q r The Qrmap Qrφ Qr: QrC Q r→ QrB Q rdefined Q rby Q rφ(x) Qr= Qrx Qr+ Qr3 Q ris Q rone Q rto Q rone Q rand Q ronto Q rB, Q rso |C|Qr= Qr|B| Qr= Qrℵ0. Q rThus Qrwe Qrconsider Qr3Qr+Qrℵ0 Q r= Qrℵ0. ii) Qr QrLet Q rA Q r = Q r {1,Qr2,Qr3,Qr·Qr·Qr·} Q r and Q r B Qr Qr= Q r {1/2,Qr3/2,Qr5/2,Qr·Qr·Qr·}. Then Q r |A| Qr Qr= Qr Qr|B| Qr Qr= Qr Qrℵ0 Qr Qr Qrand Q r A Q r and B Q rhave Q rno Q relements Q r in Q rcommon. Qr Q r The Q rset Q rC Q r containing Q rall Q relements Q r in Q reither Q rA Q rof Q rB Q r is Q rC Q r = {1/2,Qr1,Qr3/2,Qr2,Qr5/2,Qr3,Qr·Qr·Qr·}. Qr Q r The Q r map Q r φ Q r : Q r C Qr Qr→Qr QrA Q r defined Q r by Q r φ(x) Q r = Q r 2x Q r is Q r one Q r to Q r one Q r and Q r onto Q r A, Q rso Q r |C| Qr= Qr|A| Qr= Qrℵ0. Q r Thus Q r we Q r consider Q r ℵ0 Q r + Qrℵ0 Qr Q r = Qrℵ0. b. Q rWe Qrleave Qrthe Qrplotting Qrof Qrthe Qrpoints Qrin QrAQr×QrB Qrto Qryou. Q rFigure Qr0.14 Qrin Qrthe Qrtext, Qrwhere Qrthere Qrare Qrℵ0 rowsQreachQrhavingQrℵ0 Q rentries,QrillustratesQrthat Qrwe QrwouldQrconsider QrthatQrℵ0 Qr·Qrℵ0 Qr=Qrℵ0. 21. There Qrare Qr102 Qr = Qr100 Qrnumbers Qr(.00 Qrthrough Qr.99) Qrof Qrthe Qrform Qr.##, Qrand Qr105 Q r = Qr100, Qr000 Qrnumbers Qr(.00000 Q r through Qr.99999) Qrof Qrthe Qrform Qr.#####. QrThus Qrfor Qr.##### Qr· Qr· Qr·, Qrwe Qrexpect Qr10ℵ0 Q rsequences Qrrepresenting Q r all Qrnumbers Qrx Qr∈ QrR Qrsuch Q rthat Qr0 Qr≤ Qrx Qr≤ Qr1, 0 (2 ) ) Qrbut Qra Qrsequence Qrtrailing Qroff Qrin Qr0’s Qrmay Qrrepresent Qrthe Qrsame Q r x Qr∈ QrR Qras Qra Qrsequence Qrtrailing Qrof Qrin Qr9’s. Q rAt Qrany Qrrate, Qrwe Qrshould Qrhave Qr10ℵ0 Q r≥Qr|[0,Qr1]|Qr= Qr|R|; Qrsee QrExercise 15. Q r On Qrthe Qrother Qrhand, Qrwe Q rcan Qrrepresent Qrnumbers Qrin Q rR Qrusing Qrany Qrinteger Qrbase Q rn Q r> Q r1, Qrand Qrthese Q r same Qr10ℵ0 Qrsequences Qrusing Qrdigits Qrfrom Qr0 Qrto Qr9 Qrin Qrbase Qrn Qr= Qr12 Qrwould Qrnot Qrrepresent Qrall Qrx Qr∈ Qr[0, Qr1], Qrso Qrwe Q r have Qr10ℵ0 Q r≤ Qr|R|. Q rThus Qrwe Qrconsider Qrthe Qrvalue Qrof Qr10ℵ0 Qrto Qrbe Qr|R|. Q rWe Qrcould Qrmake Qrthe Qrsame Qrargument Q r using Q rany Q rother Q rinteger Q rbase Q rn Q r> Q r1, Q r and Q r thus Q rconsider Q rnℵ0 Qr= Q r|R| Q r for Q rn Q r∈ Q rZ + , Qrn Q r> Q r1. QrIn Q rparticular, Q r 12ℵ0 Qr Q r= Q r2ℵ0 Qr Q r= Q r|R|. [Show More]

Last updated: 2 months ago

Preview 5 out of 57 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Loading document previews for SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full Complete

Loading document previews ...

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$7.50

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

36
0

Document information


Connected school, study & course


About the document


Uploaded On

Sep 27, 2025

Number of pages

57

Written in

All

Seller


Profile illustration for TEST & SOLUTIONS
TEST & SOLUTIONS

Member since 4 months

4 Documents Sold

Additional information

This document has been written for:

Uploaded

Sep 27, 2025

Downloads

 0

Views

 36

More From TEST & SOLUTIONS

View all TEST & SOLUTIONS's documents »

$7.50
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·