Mathematics > Edexcel > 2022 pearson june booklet + mark scheme Pearson Edexcel International GCSE 4PM1/02 Further Pure Math (All)
Answer all ELEVEN questions. Write your answers in the spaces provided. You must write down all the stages in your working. 1 Find the set of values of k for which the equation 2kx2 + 5kx + 5k – ... 3 = 0 where k ≠ 0 has real roots. (4) .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. (Total for Question 1 is 4 marks)4 *P71666A0436* 2 A particle P moves along the x‑axis. At time t seconds, the displacement, x metres, of P from the origin O is given by x = t4 – 13.5t + 12 (a) Find the velocity, in m/s, of P when t = 3 (2) (b) Find the value of t for which P is instantaneously at rest. (2) (c) Find the acceleration, in m/s2, of P when t = 2 (2) .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. ........................................................................................................ [Show More]
Last updated: 2 years ago
Preview 1 out of 65 pages
Buy this document to get the full access instantly
Instant Download Access after purchase
Buy NowInstant download
We Accept:
Can't find what you want? Try our AI powered Search
Connected school, study & course
About the document
Uploaded On
Feb 20, 2023
Number of pages
65
Written in
All
This document has been written for:
Uploaded
Feb 20, 2023
Downloads
0
Views
67
Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.
We're available through e-mail, Twitter, Facebook, and live chat.
FAQ
Questions? Leave a message!
Copyright © Scholarfriends · High quality services·