Mathematics  >  QUESTIONS & ANSWERS  >  Cambridge International AS & A Level MATHEMATICS 9709/13 Paper 1 Pure Mathematics 1 2022 +MARK SCHEM (All)

Cambridge International AS & A Level MATHEMATICS 9709/13 Paper 1 Pure Mathematics 1 2022 +MARK SCHEME

Document Content and Description Below

1 The coefficient of x3 in the expansion of @p + p1 xA4 is 144. Find the possible values of the constant p. [4] ...................................................................................... ... .......................................................................... ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ © UCLES 2022 9709/13/M/J/22 [Turn over4 2 1 y π 2π 3π 4π −5 −4 −3 −2 −1 1 0 0 y = p sinq1 + r The diagram shows part of the curve with equation y = p sinq1 + r, where p, q and r are constants. (a) State the value of p. [1] ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ (b) State the value of q. [1] ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ (c) State the value of r. [1] ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ .............................................................................................................. [Show More]

Last updated: 3 years ago

Preview 1 out of 34 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of Cambridge International AS & A Level MATHEMATICS 9709/13 Paper 1 Pure Mathematics 1 2022 +MARK SCHEME document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$10.00

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

112
0

Document information


Connected school, study & course


About the document


Uploaded On

Oct 27, 2022

Number of pages

34

Written in

All

Seller


Profile illustration for keisha
keisha

Member since 3 years

5 Documents Sold

Additional information

This document has been written for:

Uploaded

Oct 27, 2022

Downloads

 0

Views

 112

Document Keyword Tags


$10.00
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·