Mathematics  >  MARK SCHEMES  >  GCE Mathematics B (MEI) H640/03: Pure Mathematics and Comprehension Advanced GCE Mark Scheme for Nov (All)

GCE Mathematics B (MEI) H640/03: Pure Mathematics and Comprehension Advanced GCE Mark Scheme for November 2020

Document Content and Description Below

GCE Mathematics B (MEI) H640/03: Pure Mathematics and Comprehension Advanced GCE Mark Scheme for November 2020 Oxford Cambridge and RSA Examinations GCE Mathematics B (MEI) H640/03: Pure M ... athematics and Comprehension Advanced GCE Mark Scheme for November 2020Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society. This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced. All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. Mark schemes should be read in conjunction with the published question papers and the report on the examination. © OCR 2020H640/03 Mark Scheme November 2020 2 Text Instructions Annotations and abbreviations Annotation in scoris Meaning and BOD Benefit of doubt FT Follow through ISW Ignore subsequent working M0, M1 Method mark awarded 0, 1 A0, A1 Accuracy mark awarded 0, 1 B0, B1 Independent mark awarded 0, 1 E Explanation mark 1 SC Special case ^ Omission sign MR Misread BP Blank page Highlighting Other abbreviations in mark scheme Meaning E1 Mark for explaining a result or establishing a given result dep* Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. cao Correct answer only oe Or equivalent rot Rounded or truncated soi Seen or implied www Without wrong working AG Answer given awrt Anything which rounds to BC By Calculator DR This indicates that the instruction In this question you must show detailed reasoning appears in the question.H640/03 Mark Scheme November 2020 3 Subject-specific Marking Instructions for AS Level Mathematics B (MEI) a Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required. For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. Award NR (No Response) - if there is nothing written at all in the answer space and no attempt elsewhere in the script - OR if there is a comment which does not in any way relate to the question (e.g. ‘can’t do’, ‘don’t know’) - OR if there is a mark (e.g. a dash, a question mark, a picture) which isn’t an attempt at the question. Note: Award 0 marks only for an attempt that earns no credit (including copying out the question). If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended. b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. If you are in any doubt whatsoever you should contact your Team Leader.H640/03 Mark Scheme November 2020 4 c The following types of marks are available. M A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified. A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words “Determine” or “Show that”, or some other indication that the method must be given explicitly. A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. B Mark for a correct result or statement independent of Method marks. E A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument. d When a part of a question has two or more ‘method’ steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation ‘dep*’ is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given. e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only – differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case, please escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be ‘follow through’. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.H640/03 Mark Scheme November 2020 5 f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. • When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range. NB for Specification A the rubric specifies 3 s.f. as standard, so this statement reads “3 s.f” Follow through should be used so that only one mark in any question is lost for each distinct accuracy error. Candidates using a value of 9.80, 9.81 or 10 for g should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric. g Rules for replaced work and multiple attempts: • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others. • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete. • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately. h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate’s data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. E marks are lost unless, by chance, the given results are established by equivalent working. Note that a miscopy of the candidate’s own working is not a misread but an accuracy error. i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold “In this question you must show detailed reasoning”, or the command words “Show” and “Determine. Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader. j If in any case the scheme operates with considerable unfairness consult your Team Leader.H640/03 Mark Scheme November 2020 6 Question Answer Marks AOs Guidance 1 BC 2 × 0 + 4 × 1 + 8 × 2 + 16 × 3 + 32 × 4 M1 1.1a At least two terms written one error, OR correct answer out, allow Terms may not be seen as may be done completely on 196 A1 1.1 calculator [2] 2 Attempt to find where graph crosses x-axis M1 3.1a E.g. � = −1 or � = 3 seen or (1 − �)2 > 22 Both � = −1 and � = 3 seen A1 1.1 May be in final answer � < −1 or � > 3 OE B2 2.2a 2.2a B1 if equals included in inequalities but otherwise correct Allow , (comma) for ‘or’ but do not allow ‘and’ [4] (both inequalities needed for B1 or B2) 3 10 +10 × 0.98 + 10 × 0.982 or 10 + 9.8 + 9.604 M1 3.1b Use of GP with common ratio 0.98 GP implied by formula for � ∞, �� or �� showing 0.98 or 1st 3 terms 10 1−0.98 M1 1.1 Sum to infinity 500 A1 3.2a [3] 4 BC is parallel to � + � OR 1 unit at 45̊ M1 3.1a Eg ki+kj |� + �| = √2 M1 1.1 Could be on diagram BC �����⃗ = 1 √2 (� + �) oe A1 2.2a Must be exact eg cos45i + sin45j [3]H640/03 Mark Scheme November 2020 7 Question Answer Marks AOs Guidance 5 (a) (i) � = 0 B1 1.1 If answers given in both degrees and radians follow inst 2g � = � B1 1.1 180 gets 0 [2] 5 (a) (ii) �� 2 , 1� B1 2.2a (90, 1) or (1.57, 1) get 0 [1] 5 (b) 1 − cosec1 = −0.188... or ‘negative’ 2 – cosec 2 = 0.900 or ‘positive’ B1 1.1a Both correct OE E,g, may use cosec� − � Change of sign so root between 1 and 2 E1 2.4 Condone no mention of AG continuity Dep on B mark [2] 5 (c) (i) BC 1.18840…, 1.07785… B1 1.1a Both correct to at least 3dp. [1] 5 (c) (ii) BC 1.114 B1 2.2a [1] 5 (d) No, it converges to 1.114 E1 1.1 OR same as their (c) (ii) or ‘the root between 1 and 2’ etc Just ‘No’ gets 0 ‘Yes’ with anything gets 0 [1]H640/03 Mark Scheme November 2020 8 Question Answer Marks AOs Guidance 5 (a) (i) � = 0 B1 1.1 If answers given in both degrees and radians follow inst 2g 5 (e) B1 B1 B1 3.2a 2.2a 1.1 Starting point between min and right asymptote Initial “staircase” (≥2 horiz sections) Spirals into lower root 3 B marks all independent) [3] 6 (a) (i) ���� B1 1.2 [1] 6 (a) (ii) Reason referring to growth proportional to profit. E1 3.3 E.g. As more people hear about the business, they will sell more so it is reasonable that the rate of growth is proportional to the profits [1]H640/03 Mark Scheme November 2020 9 Question Answer Marks AOs Guidance 6 (b) �� � = ��� + �� M1 1.1 Equation is of form “� = �� + �” so a straight line - hence model is consistent with graph E1 2.4 [2] 6 (c) �� � = 1.9 M1 1.1a Intercept = 1.9 not enough for M1 � = 6.686 A1 2.2a One or more d.p. Allow �1.9 � = 0.4 1.6 M1 1.1 Attempt to find gradient � = 0.24 to 0.25 A1 2.2a 11 45 gets M1A1 [4] 6 (d) � = 11 B1 3.3 � = 6.686 × �0.25� So � = 6.686 × �0.25×11 M1 3.4 Use of model with their A and k 104.586… £104 587 A1 3.2a Translation into pounds (may be to nearest thousand) (FT their k and a) [3] 6 (e) Not reliable. Extrapolation may not be valid o.e. OR Fit of model is good so far and it’s only two more years o.e. E1 3.5b E.g. • The relationship between sales and time may change • There is a limit to the market for revision resources • Changes in the economy may affect the business ‘Reliable’ plus ‘extrapolation’ does not score [1] 7 (a) � �(�−�) B1 [1] 1.1 Denominator may be multiplied outH640/03 Mark Scheme November 2020 10 Question Answer Marks AOs Guidance 7 (b) DR ∫ 400 �(400−�) d� = ∫ �� M1 1.1a Separates variables (inc dx and dt) 400 either side � �1 � + 4001− �� d� = � �� M1 3.1a Use of result from partial fractions (a) or method for �� � − ��( 400 − �) = � + � M1 A1 1.1 1.1 Attempt to integrate (at least one term correct) All integration correct �� �400�−�� = � + � Or �� �400 ��−�� = � When � = 0 , � = 100 so � = �� �1 3� M1 1.1 Finding constant ( or A=3) � = �� �400 3�−�� When � = 10 , 10 = �� �400 3�−�� M1 3.4 Using log laws to combine the c value 3� 400−� = �10 ⇒ 3� = �10(400 − �) M1 2.1 Attempt to rearrange to find x 400 A1 3.2a Must be rounded to nearest whole number [8]H640/03 Mark Scheme November 2020 11 Question Answer Marks AOs Guidance 7 (b) OR DR ∫ 400 �(400−�) � 100 �� = ∫010 �� �100 � �1 � + 4001− ���� = �010�� [�� � − ��( 400 − �)]100 � = [�]0 10 ��� (400�− �)�100 � = [�]0 10 �� � (400 − �) − �� 100 300 = 10 − 0 �� � (400 − �) − �� 1 3 = 10 �� 3� (400 − �) = 10 3� (400 − �) = �10 3� = �10(400 − �) X = 400 M1 M1 M1 A1 M1 M1 M1 A1 [8] Separates variables Use result from (a) or method for partial fractions Attempt to integrate (at least one term correct) All integration correct Limits applied (condone one error) Combining log terms together Attempt to rearrange to find X Must be rounded to nearest whole numberH640/03 Mark Scheme November 2020 12 Question Answer Marks AOs Guidance 8 (a) (i) �� �� = −�� (�� + �)� M1 A1 1.1a 1.1 Attempt to differentiate Correct first derivative chain or quotient or product rule Don’t have to simplify �2� ��2 = −4��2+1�3+4�.2�.3��2 +1�2 (�2+1)6 M1 A1 1.1a 1.1 Attempt to use quotient rule to find second derivative Any correct expression for second derivative For each M1 allow one error �2� ��2 = −4(�2 + 1) + 24�2 (�2 + 1)4 ⇒ �2� ��2 = 20�2 − 4 (�2 + 1)4 A1 2.1 Simplifying expression for second derivative by cancelling (�2 + 1) and correct completion (AG) [5] 8 (a) (ii) DR For concave downwards, 20�2−4 (�2+1)4 < 0 so20�2 − 4 < 0 M1 2.2a 5�2 < 1 so �2 < 1 5 M1 1.1 Or � = ± 1 √5 Condone �2 > 1 5 following y’’ > 0 for M1 − 1 √5 < � < 1 √5 A1 2.5 Correct solution correctly expressed Allow decimals (±0.447) [3]H640/03 Mark Scheme November 2020 13 Question Answer Marks AOs Guidance 8 (b) �� �� = ���2 � M1 1.1a o.e. Condone sec2x ���==−11 (1 +��� ��2��2 �)2 �� M1 1.1 Substitution for either may be missing) x or dx (limits � (1 +��� ��2��2 �)2�� � 4 − � 4 M1 1.1 Limits (may be done at any point) � ���12 � �� � 4 − � 4 M1 2.2a Use of 1 + ���2 � = ���2 � � ���2��� � 4 − � 4 M1 1.1 Use of ��� � = 1 ��� � � 1 2 (���2 � + 1)�� � 4 − � 4 M1 3.1a Use of ��� 2 � = 2 ���2 � − 1 1 2 �1 2 ��� 2 � + �� − � 4 � 4 M1 1.1 Integration. Must include at least one trig term. Limits may be wrong or missing 1 2 �1 + � 2� = 1 2 + � 4 A1 2.1 Exact form [8]H640/03 Mark Scheme November 2020 14 Question Answer Marks AOs Guidance 9 (a) � = 1 and � > 1 ⇒ �� = 1 B1 1.1 Subbing values may score B1 but not E1 and �� = � Hence ��< �� E1 2.2a Convincing completion; AG [2] 9 (b) Integer values of � and � with � > � > 1 such that ��not greater than �� B1 2.3 Possible values • � = 2, � = 3 • � = 2, � = 4 [1] 10 DR ��� 1 � �� = [�� �]� � M1 1.1a May have �� |�| Don’t allow if ‘+ c’ or if no [ ] or limits but condone no dx �� � − �� � = �� � − 1 A1 2.2a Convincing completion inc at least 1 intermediate line of working (AG) [2] 11 �� �� = �� M1 1.1a Hence �� �� > 0for all � so ��is an increasing function for all � E1 2.4 Convincing completion (AG) [2]H640/03 Mark Scheme November 2020 15 Question Answer Marks AOs Guidance 12 (a) �� �� = � � −�� � �2 oe M1 A1 1.1a 1.1 M1 for attempt to use quotient rule (allow one error) 1−�� � �2 = 0 ⇒ �� � = 1 ⇒ � = � E1 2.2a Convincing completion (AG) Subbing x = e gets M0 [3] 12 (b) �� �� = 1 2� − �� � �2 2 2 2 3 4 3 4 3 2 ln d 2 d 2 2 ln 3 2ln x x x y x x x x x x x x x x x − = − − − = − − − + = or �2 �−1 ��−(1−���)2� �4 M1 A1 1.1a 1.1 Attempt to differentiate again (allow one error) Correct second derivative OR M1 subst (must be seen) values either side of e into derivative A1 correct conclusion about sign of gradient E1 correct conclusion from correct working regarding maximum When � = �, �2� ��2 = − 1 3� < 0 hence maximum E1 2.1 Correct conclusion from correct working (-0.05) [3] 12 (c) �� � � > �� � � ⇒ 1 � > ��� � or ���� > ���� M1 3.1a � � � > � hence e� > �� or ���� > ���� �� > �� A1 2.4 Convincing completion (AG) [2]OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA [Show More]

Last updated: 3 years ago

Preview 1 out of 17 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of GCE Mathematics B (MEI) H640/03: Pure Mathematics and Comprehension Advanced GCE Mark Scheme for November 2020 document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$7.50

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

52
0

Document information


Connected school, study & course


About the document


Uploaded On

Oct 07, 2022

Number of pages

17

Written in

All

Seller


Profile illustration for Bobweiss
Bobweiss

Member since 5 years

39 Documents Sold

Reviews Received
2
0
0
0
2
Additional information

This document has been written for:

Uploaded

Oct 07, 2022

Downloads

 0

Views

 52

Document Keyword Tags

Recommended For You

Get more on MARK SCHEMES »

$7.50
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·