Information Technology  >  QUESTIONS & ANSWERS  >  Georgia Tech ISYE-ISYE-6501 Week 1 Assignment, 100% Accurate answers, (All)

Georgia Tech ISYE-ISYE-6501 Week 1 Assignment, 100% Accurate answers,

Document Content and Description Below

ISYE-ISYE-6501 Week 1 Assignment Question 2.1 Describe a situation or problem from your job, everyday life, current events, etc., for which a classification model would be appropriate. List some pre ... dictors that you use. Designing user personas in product design developments The goal of user personas is to develop realistic representations of key audiences that give a clear picture of their expectations and use cases for products. Using user personas in the product design process is to understand user characteristics, needs, goals, etc. and gain valuable insights into user journeys, and later, test prototypes. With user personas, product owners, designers and engineers should be able to do the following: ● Put users at the center of product design to build empathy ● Focus on their campaign process and requirements ● Share insights with other stakeholders to gain consensuses ● Ultimately make products more actionable and desirable aligning users' needs and goals K-means classification​ would be an appropriate model to identify how many user persona types should be identified by using the current product analytics data that illustrate product uses. Potential predictors for this model may include 1) number of product access, 2) frequency of using specific product features (these features should signify what task each user should accomplish using the product), 3) 2 data entries for agency and department identifications, 4) exporting specific data Question 2.2.1-2 Using the support vector machine function ksvm contained in the R package kernlab, find a good classifier for this data. Show the equation of your classifier, and how well it classifies the data points in the full data set. ● Executive data finding summary ● Best accuracy - 98.16514% with rbfdot & C=1,000 C = 0.01 C = 1 C = 10 C = 100 C = 1,000 polydot 0.8639144 0.8639144 0.8639144 0.8639144 0.8623853 rbfdot 0.8593272 0.8715596 0.9082569 0.9571865 0.9816514 vanilliabot 0.8639144 0.8639144 0.8639144 0.8639144 0.8623853> data=read.table("~/Desktop/GATech/ISYE-6501/Week1/credit_card_data-headers.txt",header = T,sep='\t') > library(kernlab) > model1v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="vanilladot", C=0.1, scaled=TRUE) Setting default kernel parameters > model2v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="vanilladot", C=1, scaled=TRUE) Setting default kernel parameters > model3v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="vanilladot", C=10, scaled=TRUE) Setting default kernel parameters > model4v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="vanilladot", C=100, scaled=TRUE) Setting default kernel parameters > model5v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="vanilladot", C=1000, scaled=TRUE) Setting default kernel parameters > model1p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot", C=0.1, scaled=TRUE) Setting default kernel parameters > model2p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot", C=1, scaled=TRUE) Setting default kernel parameters > model3p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot", C=10, scaled=TRUE) Setting default kernel parameters > model4p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot", C=100, scaled=TRUE) Setting default kernel parameters > model5p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot", C=1000, scaled=TRUE) Setting default kernel parameters > model1r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot", C=0.1, scaled=TRUE) > model1r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot", C=0.1, scaled=TRUE)> model2r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot", C=1, scaled=TRUE) > model3r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot", C=10, scaled=TRUE) > model4r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot", C=100, scaled=TRUE) > model5r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot", C=1000, scaled=TRUE) > a1p = colSums(model1p@xmatrix[[1]] * model1p@coef[[1]]) > a1r = colSums(model1r@xmatrix[[1]] * model1r@coef[[1]]) > a1v = colSums(model1v@xmatrix[[1]] * model1v@coef[[1]]) > a2p = colSums(model2p@xmatrix[[1]] * model2p@coef[[1]]) > a2r = colSums(model2r@xmatrix[[1]] * model2r@coef[[1]]) > a2v = colSums(model2v@xmatrix[[1]] * model2v@coef[[1]]) > a3p = colSums(model3p@xmatrix[[1]] * model3p@coef[[1]]) > a3r = colSums(model3r@xmatrix[[1]] * model3r@coef[[1]]) > a3v = colSums(model3v@xmatrix[[1]] * model3v@coef[[1]]) > a4p = colSums(model4p@xmatrix[[1]] * model4p@coef[[1]]) > a4r = colSums(model4r@xmatrix[[1]] * model4r@coef[[1]]) > a4v = colSums(model4v@xmatrix[[1]] * model4v@coef[[1]]) > a5p = colSums(model5p@xmatrix[[1]] * model5p@coef[[1]]) > a5r = colSums(model5r@xmatrix[[1]] * model5r@coef[[1]]) > a5v = colSums(model5v@xmatrix[[1]] * model5v@coef[[1]]) > a1p A1 A2 A3 A8 A9 -0.0012124569 -0.0006070979 -0.0013956063 0.0033049356 1.0040211349 A10 A11 A12 A14 A15 -0.0031961704 0.0004545954 -0.0003748261 -0.0012915663 0.1064276327 > a1r A1 A2 A3 A8 A9 A10 0.4313879 2.4298212 2.7556247 7.0377742 17.9247112 -3.9792682 A11 A12 A14 A15 6.8491091 -0.8738477 -2.6108725 7.0446083 > a1v A1 A2 A3 A8 A9 -0.0011608980 -0.0006366002 -0.0015209679 0.0032020638 1.0041338724 A10 A11 A12 A14 A15 -0.0033773669 0.0002428616 -0.0004747021 -0.0011931900 0.1064450527 > a2p​ A1 A2 A3 A8 A9 -0.0011779029 -0.0007585829 -0.0015830018 0.0030741611 1.0045976382 A10 A11 A12 A14 A15 -0.0028875480 0.0001266113 -0.0006759177 -0.0013468793 0.1064496302 > a2r A1 A2 A3 A8 A9 A10 0.4548067 -1.9289825 4.1436685 14.2315520 31.7459310 -6.9658393 A11 A12 A14 A15 18.9744715 -5.0372010 -16.1513729 27.9249126 > a2 [Show More]

Last updated: 3 years ago

Preview 1 out of 9 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of Georgia Tech ISYE-ISYE-6501 Week 1 Assignment, 100% Accurate answers, document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Also available in bundle (1)

Click Below to Access Bundle(s)

GEORGIA TECH BUNDLE, ALL ISYE 6501 EXAMS, HOMEWORKS, QUESTIONS AND ANSWERS, NOTES AND SUMMARIIES, ALL YOU NEED

GEORGIA TECH BUNDLE, ALL ISYE 6501 EXAMS, HOMEWORKS, QUESTIONS AND ANSWERS, NOTES AND SUMMARIIES, ALL YOU NEED

By bundleHub Solution guider 3 years ago

$60

59  

Reviews( 0 )

$7.00

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

159
0

Document information


Connected school, study & course


About the document


Uploaded On

Sep 03, 2022

Number of pages

9

Written in

All

Seller


Profile illustration for bundleHub Solution guider
bundleHub Solution guider

Member since 3 years

356 Documents Sold

Reviews Received
27
21
9
0
9
Additional information

This document has been written for:

Uploaded

Sep 03, 2022

Downloads

 0

Views

 159

Document Keyword Tags

More From bundleHub Solution guider

View all bundleHub Solution guider's documents »

$7.00
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·