ISYE-ISYE-6501 Week 1 Assignment
Question 2.1 Describe a situation or problem from your job, everyday life, current events,
etc., for which a classification model would be appropriate. List some predictors that you use
...
ISYE-ISYE-6501 Week 1 Assignment
Question 2.1 Describe a situation or problem from your job, everyday life, current events,
etc., for which a classification model would be appropriate. List some predictors that you use.
Designing user personas in product design developments
The goal of user personas is to develop realistic representations of key audiences that give a
clear picture of their expectations and use cases for products. Using user personas in the
product design process is to understand user characteristics, needs, goals, etc. and gain
valuable insights into user journeys, and later, test prototypes.
With user personas, product owners, designers and engineers should be able to do the
following:
● Put users at the center of product design to build empathy
● Focus on their campaign process and requirements
● Share insights with other stakeholders to gain consensuses
● Ultimately make products more actionable and desirable aligning users' needs and goals
K-means classification would be an appropriate model to identify how many user persona types
should be identified by using the current product analytics data that illustrate product uses.
Potential predictors for this model may include 1) number of product access, 2) frequency of
using specific product features (these features should signify what task each user should
accomplish using the product), 3) 2 data entries for agency and department identifications, 4)
exporting specific data
Question 2.2.1-2 Using the support vector machine function ksvm contained in the R package
kernlab, find a good classifier for this data. Show the equation of your classifier, and how well
it classifies the data points in the full data set.
● Executive data finding summary
● Best accuracy - 98.16514% with rbfdot & C=1,000
C = 0.01 C = 1 C = 10 C = 100 C = 1,000
polydot 0.8639144 0.8639144 0.8639144 0.8639144 0.8623853
rbfdot 0.8593272 0.8715596 0.9082569 0.9571865 0.9816514
vanilliabot 0.8639144 0.8639144 0.8639144 0.8639144 0.8623853
>
data=read.table("~/Desktop/GATech/ISYE-6501/Week1/credit_card_data-headers.txt",header
= T,sep='\t')
> library(kernlab)
> model1v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc",
kernel="vanilladot", C=0.1, scaled=TRUE)
Setting default kernel parameters
> model2v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc",
kernel="vanilladot", C=1, scaled=TRUE)
Setting default kernel parameters
> model3v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc",
kernel="vanilladot", C=10, scaled=TRUE)
Setting default kernel parameters
> model4v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc",
kernel="vanilladot", C=100, scaled=TRUE)
Setting default kernel parameters
> model5v <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc",
kernel="vanilladot", C=1000, scaled=TRUE)
Setting default kernel parameters
> model1p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot",
C=0.1, scaled=TRUE)
Setting default kernel parameters
> model2p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot",
C=1, scaled=TRUE)
Setting default kernel parameters
> model3p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot",
C=10, scaled=TRUE)
Setting default kernel parameters
> model4p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot",
C=100, scaled=TRUE)
Setting default kernel parameters
> model5p <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="polydot",
C=1000, scaled=TRUE)
Setting default kernel parameters
> model1r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot",
C=0.1, scaled=TRUE)
> model1r <- ksvm(as.matrix(data[,1:10]), as.factor(data[,11]), type="C-svc", kernel="rbfdot",
C=0.1, scaled=TRUE)
[Show More]