Math 51 TA notes — Autumn 2007
Jonathan Lee
December 3, 2007
Minor revisions aside, these notes are now essentially final. Nevertheless, I do welcome
comments!
Go to http://math.stanford.edu/~jlee/math51/ to find th
...
Math 51 TA notes — Autumn 2007
Jonathan Lee
December 3, 2007
Minor revisions aside, these notes are now essentially final. Nevertheless, I do welcome
comments!
Go to http://math.stanford.edu/~jlee/math51/ to find these notes online.
Contents
1 Linear Algebra — Levandosky’s book 2
1.1 Vectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Linear Combinations and Spans . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dot Products and Cross Products . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Matrix-Vector Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Nullspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.9 Column space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.10 Subspaces of Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.11 Basis for a Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.12 Dimension of a Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.13 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.14 Examples of Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 7
1.15 Composition and Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . 8
1.16 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.17 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.21 Systems of Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.23 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.25 Symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.26 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
12 Vector Calculus — Colley’s book 11
2.2 Differentiation in Several Variables . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 The derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Properties of the Derivative; Higher Order Derivatives . . . . . . . . . 15
2.2.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Directional Derivatives and the Gradient . . . . . . . . . . . . . . . . 15
2.3 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Parametrized curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Maxima and Minima in Several Variables . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Differentials and Taylor’s Theorem . . . . . . . . . . . . . . . . . . . 16
2.4.2 Extrema of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Some Applications of Extrema . . . . . . . . . . . . . . . . . . . . . . 19
1 Linear Algebra — Levandosky’s book
• useful (non-)Greek letters: α, β, γ, δ, u, v, x, y, z
1.1 Vectors in Rn
• a vector in Rn is an ordered list of n real numbers; there are two basic vector operations
in Rn: addition and scalar multiplication
• examples of vector space axioms — commutativity, associativity — “can add in any
order”
• standard position — vector’s tail is at the origin
1.2 Linear Combinations and Spans
• a linear combination of vectors {v1, . . . , vk} in Rn is a sum of scalar multiples of the vi
• the span is the set of all linear combinations
• a line L in Rn has a parametric representation
L = {x0 + αv : α ∈ R}
with parameter α
• given two distinct points on a line, we can find its parametric representation; can also
parametrize line segments
2• two non-zero vectors in Rn will span either a line or a plane; the former happens if
they’re collinear (or one is redundant)
• a plane P in Rn has a parametric representation
P = {x0 + αv1 + βv2 : α, β ∈ R}
with parameters α and β
• given three non-collinear points on a plane, we can find its parametric representation
• checking for redundancy — “row reduction”
1.3 Linear Independence
[Show More]